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Abstract

A multiblock unstructured grid approach is pres-
ented for solving three-dimensional incompressible in-
viscid and viscous turbulent flows about complete con-

figurations. The artificial compressibility form of the
governing equations is solved by a node--based, finite
volume implicit scheme which uses a backward Euler
time discretization. Point Gauss-Seidel relaxations are

used to solve the linear system of equations at each time

step. This work employs a multiblock strategy to the

solution procedure, which greatly improves the effi-
ciency of the algorithm by significantly reducing the

memory requirements by a factor of 5 over the single-

grid algorithm while maintaining a similar convergence
behavior. The numerical accuracy of solutions is as-

sessed by comparing with the experimental data for a

submarine with stern appendages and a high-lift config-
uration.

Introduction

Unstructured grid technology offers several advan-

tages for applications to computational field simulation
(CFS). The geometric flexibility inherent in the ap-
proach makes it ideally suited for CFS applications with

complex geometries and readily supports solution-
adaptation methods, which can be essential for accurate

simulations of complex flows with a minimal number of
mesh points. In addition, unstructured grid generation
is far more automatable than are the tasks associated

with multiblock structured grid generation, resulting in
considerable savings in the overall time required to per-
form simulations involving complex geometries. The
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primary disadvantage associated with the use of un-
structured meshes is the inherent inefficiency of an un-

structured solver. This inefficiency is caused by the

need to explicitly store the data structure, and the fact
that for tetrahedral meshes, many edges are coincident

to each node. For implicit schemes, the problem is
worsened because flux Jacobian matrices need to be

stored for every edge in the mesh which is equivalent to

storing the off--diagonal elements for a first-order linea-
rization of the residual. The result is that the memory

required for implicit schemes can be a limiting factor for

performing large-scale turbulent flow computations on
unstructured meshes.

The objective of this research is to develop an effi-

cient, implicit, unstructured flow solver for computing
three-dimensional, incompressible, high Reynolds
number viscous flows about complete configurations,

such as fully appended submarines. The primary focus
is to reduce the memory required for viscous flow simu-

lations by using an effective multiblock strategy. Here,
the domain is divided into distinct blocks similar to the

procedure often used for parallel computations. The
solution is advanced from one time-step to the next by

sequentially updating the solution in each block, where
the Jacobians and metric quantities are computed only
within each block. This technique has been previously

demonstrated in Ref. [ 1] for two-dimensional computa-
tions and is extended to three-dimensions in the present
work.

The basic solution algorithm is that of Anderson,
Rausch, and Bonhaus, which utilizes the artificial com-

pressibility form of the incompressible Navier-Stokes
equations and is referred to as FUN3D [2]. A Spalart
and Allmaras one--equation turbulence model [3] is
used for simulating the effects of turbulence. The dis-
cretized scheme uses a node-based, finite volume
scheme where the inviscid fluxes are evaluated using a

second-order Roe scheme with a least squares proce-
dure for data reconstruction, while the viscous fluxes are

evaluated with a finite-volume formulation that is

equivalent to a Galerkin type of approximation. The
time advancement algorithm is based on the linearized
backward Euler time--difference scheme, which yields



alinearsystemofequationsforthesolutionateachtime
step.TheGauss-Seidelprocedureisusedtosolvethe
linearsystemofequationsateachtimestep.

Thispaperisorganizedasfollows.Theartificial
compressibilityform of the three--dimensionalRe-
ynolds-averagedNavier-Stokesequationsis firstout-
lined,followedbythenumericalproceduresusedinthe
currentcode.Themultiblockalgorithmis introduced
next,whichincludesgriddecomposition,datastructure
forthemultiblockalgorithm,andboundarytreatmentat
blockinterfaces.Solutionsofinviscidandviscoustur-
bulentflowsaboutappendedsubmarines,andaturbu-
lentflowaboutahigh-liftconfiguration(EnergyEffi-
cientTransport),arepresentedto demonstratethe
efficiencyandaccuracyofthecurrentmultiblocksolv-
er. Someconclusionsaresummarizedin thelastsec-
tion.

Governing Equations

The unsteady three--dimensional incompressible

Reynolds-averaged Navier-Stokes equations without
body forces are written in Cartesian coordinates and in
conservative form. A pseudo-time derivative of pres-

sure is added to the continuity equation. The resulting

set of equations in integral form represents a system of
conservation laws for a control volume that relates the

rate of change of a vector of average state variables q to
the flux through the volume surface, which can be writ-
ten as

V + f_.ndl- f,.ndl = 0 (1)
11 D

where _ is the outward-pointing unit normal to the con-

trol volume V. The vector of dependent state variables

q and the inviscid and viscous fluxes normal to the con-

trol volume f_ and fv are given as
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where fl is the artificial compressibility parameter; u, v,
and w are the Cartesian velocity components in the x, y,

and z directions, respectively; 0 is the velocity normal
to the surface of the control volume, where

0 = t/x U q'- r/yV 4" R zw

and p is the pressure. Note that the variables in the pre-

ceding equations are nondimensionalized with the char-
acteristic length, freestream values of velocity, density,

and viscosity. Pressure is normalized using the follow-

ing relationship (p - p®)/p,_ V2,_, where the subscript
denotes a freestream or reference value. The shear

stresses in Eq. (1) are given as

r= = (,u + /_,)2u_

rrr = _ + /_,)2v r

r, = _ + /_,)_eeW_

r= = r_ = (_ +

+ /_,) l(u, + vx)
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r,z = r_,. = (_ + /_,) l(v_ + w,)

where/_ and/_, are the laminar and turbulent viscosities,
respectively, and Re is the Reynolds number.

Solution Algorithm

Finite-Volume Scheme

The baseline flow solver is a node-based, finite vol-

ume implicit scheme based on unstructured meshes with
tetrahedral elements. The computational domain is di-
vided into a finite number of tetrahedral elements from

which control volumes are formed that surround each
vertex in the mesh. The flow variables are stored at the

vertices of the element. Equation (1) is then numerical-

ly integrated over the closed boundaries of the control

volumes surrounding each node. These control volumes
are formed by connecting the dual faces of the edges, as

shown in Figure 1. These nonoverlapping control vol-
umes combine to completely cover the domain and are
considered to form a mesh which is dual to the mesh

composed of tetrahedral elements formed from the ver-
tices.

Numerical Flux Evaluation

The numerical evaluation of the surface integrals

in Eq. (1) is conducted separately for the inviscid and
viscous contributions, and is evaluated on the dual face

of each edge (an edge-based approach). The inviscid
fluxes are obtained on the faces of each control volume

with a second-order Roe scheme, while the viscous

2
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Figure 1. Control volume surrounding a node

terms are evaluated with a finite-volume formulation

that is equivalent to a Galerkin type of approximation
[2]. The inviscid fluxes on the boundaries of the control

volumes are given by

4- A ^
= (_(q ;n) + fi(q-;n))

1 _- {(q 4- _ q-) (2)
2

where • is the numerical flux, andf is the flux vector

given in Eq. (1). A nonsingular eigensystem for the ma-

trix IAI in two--dimensional problems was reported in
Ref. [2]. Quantities q- and q÷ are the values of the de-

pendent variables on the left and right side of the bound-
ary of the control volume. For first--order accurate dif-

ferencing, quantities q- and q* are set equal to the data
at the nodes lying on either side of the cell face. For

higher-order differencing, these values are computed
with a Taylor series expansion about the central node of
the control volume

q:.c, = q.o_. + Vq.r (3)

where r is the vector that extends from the central node

to the midpoint of each edge, and Vq is the gradient of
the dependent variables at the node and is evaluated

with a least-squares procedure [2].

The viscous flux contribution to the residual is ob-

tained using a finite-volume approach. In this ap-

proach, quantities such as velocity derivatives are first
evaluated in each tetrahedral element of the mesh and

the viscosity is computed as an average of the four nodes

making up the tetrahedron.

Time Advancement Scheme

The time-advancement algorithm is based on the

linearized backward Euler time-differencing scheme,
which yields a linear system of equations for the solu-

tion at each time step

[A]" {Aq}" = - {r}" (4)

where {r}" is the vector of steady-state residuals, {Aq}"

represents the change in the dependent variables, and
the solution matrix [A]" is written as

= _t I + tg...£r[A]"
dq (5)

The solution of this system of equations is obtained

by a relaxation scheme in which {dq}. is obtained
through a sequence of iterations, {Aq }/, which converge

to {Aq} _. There are several variations of classic relax-
ation procedures which have been used in the past for

solving this linear system of equations [4][5]. In this
work, a point implicit Gauss-Seidel procedure as de-
scribed in Ref. [2] is used. To clarify the scheme, [A]_
is first written as a linear combination of two matrices

representing the diagonal and off-diagonal terms

[A]" = [O]" + [O]" (6)

and the solution to the linear system of equations is ob-

tained by adopting a Gauss-Seidel type of strategy in
which all odd-numbered nodes are updated first, fol-

lowed by the solution of the even-numbered nodes.

This procedure can be represented as

[D]" {dq} i+' = [ - {r}" - [O] {dq} u+')/i ] (7)

where {Aq}0+,_i is the most recent value of Aq, which
will be at subiteration level i+1 for the odd-numbered

nodes that have been previously updated and at level i
for the even-numbered nodes. Normally 15-20 subit-

erations are adequate at each time step.

Turbulence Modellin_

For the current study, the one--equation turbulence

model of Spalart and Allmaras is used [3]. The model
can be implemented in a straightforward manner be-
cause there is no need to define an algebraic length

scale. The simple model [3] showed reasonably good

prediction for most airfoil flows [1][2]. However, for
the current submarine applications, it was found that the

prediction of the axial force acting on the submarine was
less than satisfactory. This is because the model over-

predicts the level of eddy viscosity in the core of a vor-
tex, which smears the vortex in the near field. This

shortcoming can be worked around through modifica-
tion of the production term as suggested in Ref. [6]. The

production term CbltOV of the model [3] is multiplied by
the "rotation function"fr I

• . 2r" / 1 -
f_,(r ,r-) = (1 + c,t) l-i---_r. _ - cr3tan 1(c,27))

- c,, (8)

Here, _ = e/_, r° = _./kol. e is the scalar
measure of rotation and curvature effects which is eval-



uatedwithacomplexexpression(seeRef.[6]),
isthenormofthewholetensor,and_ isthestrain
rate.TheconstantsareCrl=l, Cr2=12, Cr3=l, which are

based on the wingtip calculations of Dacles-Mariani et
al. [7] and on curved and rotating boundary layers. The

current work uses a simplified formula suggested by

Spalart [8], which sets ? = 0 in Eq. (8), and thus saves
considerable effort in modifying the production term.

In the solution process, the equation for turbulent

viscosity is solved using a backward Euler time-step-
ping scheme similar to that used for the flow variables,

but separated from the flow equations. This results in
a loosely coupled solution process that allows easy in-

terchange with new turbulence models.

Multiblock Algorithm

Grid Generation

To generate a multiblock structured grid, the physi-
cal domain is first divided into several subdomains with

prescribed block boundaries; the grid in each block is

then generated separately. To generate a multiblock un-
structured grid, however, the preceding process does not

apply because prescribed block boundaries will degrade
the grid quality in these regions. The multiblock un-

structured grid is generated through a grid decomposi-
tion process. First, the computational grid of the entire

physical domain is constructed within a single block us-
ing the grid generation software AFLR/SolidMesh [9]

developed at the Engineering Research Center. This
grid generation tool is very efficient in generating high

aspect-ratio viscous unstructured meshes. A readily
available partitioning software METIS [ 10] is then used
to break the mesh into several sub-domains (or blocks)

by selecting all the cells that fall into the region set for
each subdomain. Each block contains the connectivity

information required for that block, as well as the in-
formation to connect block-to-block interfaces.

Multiblock Strateav
v.

The implementation of the multiblock algorithm on
unstructured grids adopts a similar strategy as used in

structured grids [11] and in two--dimensional unstruc-
tured work [1], i.e. a vertical mode in which a complete

cycle is completed in each block before proceeding to
the next block. The advantage of this approach is that

the solution process (nonlinear and linear procedure) in
each block is local and thus does not depend on the solu-
tion in other blocks. This nature of independence of the

solution to other blocks offers great flexibility in both
implementation and memory allocation for the algo-

rithm, and also provides a natural platform for parallel
implementations. (In fact, the main difference between

the multiblock algorithm and the parallel implementa-
tion is that in the former, the solution in each block is

performed sequentially in a prescribed order, while in
the latter, all blocks are solved simultaneously). The

disadvantage of the vertical mode is that the single block
algorithm can never be recovered. Therefore if a grid

has many blocks, the convergence rate could suffer be-
cause of the explicit nature of the data interchange be-

tween blocks. Since the main purpose of this work is to
reduce the memory requirements of the unstructured

grid algorithm, the memory allocation in the code must
be done in a special way to achieve the best efficiency

in both memory usage and CPU time. In the current
work, all memory is allocated either locally or globally.

For local memory, only the storage needed for the cur-
rent block is allocated when the solution process enters

that block, and this storage is freed at the time when the

solution process leaves the block. The new storage is
reallocated when the solution process moves to the next
block. The local memory allocation is mainly for vari-
ables which do not need to be stored for all blocks, such

as the flux Jacobian matrix (most costly part in the

memory usage) which is updated after each time step in

each block. On the other hand, the global memory al-
location means that storage is allocated for all blocks

and is not freed until the solution process is complete.
Some data such as flow variables, grid coordinates and
the distance to the wall surfaces, must be stored in a

global way for all blocks. Therefore, by adopting the
above strategy for memory allocation, the memory re-

quirements of the multiblock algorithm will be much
less than that of the single block algorithm where all

memory is allocated globally.

Block Boundary_ Condition

In the current multiblock solver, each block is sur-

rounded by a set of phantom cells which connect to the
block boundaries and lie in other blocks (Figure 2), sim-

ilar to the previous work for two dimensional problems
[1]. One difference is that in the current work, the data

in both interior cells and phantom cells are stored in the
same arrays, similar to the data structure used for a cell-

centered approach on multiblock structured grids [11].
This allows the calculation of residuals at block inter-

faces to be treated in the same way as the interior nodes

in one step, instead of two steps as in the previous two-
dimensional work [1]. The new data structure not only

reduces the arrays needed for storing the information on

phantom cells, but also keeps the modification to the
original code to a minimum.

Because the current multiblock solver employes a

vertical mode, the phantom nodes can only be updated
with the values obtained in the previous step from other

blocks prior to each new iteration. This is the only time
in the solution process when the information is ex-
changed among blocks. Since the updating of gradients



block 2

phantom cell interior cell

Figure 2. Interior cells and phantom cells for block 1

at the phantom nodes occurs such that they are "lagged"
by one time step, and the correction to the dependent
flow variables in other blocks is neglected during the
Gauss-Seidel subiterations, the nodes on block inter-

faces can not be updated strictly at the correct point as

done in the single-grid solver. However, the conver-

gence behavior of the multiblock solver is not seriously
degraded by explicitly updating phantom nodes, as

shown in the subsequent section.

Results

To validate the current multiblock unstructured

solver for large-scale simulations about complete con-
figurations, three test cases are presented which include
an inviscid flow around the SUBOFF model with a sail

and four stern appendages, a viscous turbulent flow
about the SUBOFF bare hull with four stem append-

ages, and a viscous turbulent flow about a high-lift con-
figuration (Energy Efficient Transport). The computed
force and moment coefficients for the SUBOFF bare

hull with four stern appendages are compared with the

solution obtained by a structured grid solver (UNCLE)

[12] and experimental data [13]. The computed Cp dis-
tributions for the Energy Efficient Transport case are
compared with experimental data [14]. All computa-
tions were carried out on a single UltraSPARC

333.6MHz processor with 2GB in-core memory and
4MB data cache size.

SUBOFF with Sail and Stern Appendages

The first case considers an inviscid flow around the

SUBOFF model with a sail and four stern appendages.

Figure 3 shows the unstructured grid for the SUBOFF
configuration which is partitioned into 20 blocks; the

Figure 3. Twenty-block unstructured grid for ful-
ly appended submarine configuration
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Figure 4. Convergence histories for inviscid flow
about fully appended submarine

shadowed colors represent different blocks. This grid

contains approximately 216K nodes and 1.2M tetrahe-
dral elements.

The Courant-Friedrichs-Lewy (CFL) number for

the current computation has been linearly ramped from
20 to 200 over 100 iterations. The effect of the blocking

strategy on the convergence rate can be seen in Figure 4
which shows the convergence histories for the multi-

block and single-block solutions. When l0 Gauss-Sei-
del subiterations are used at each time step to obtain an

approximate solution of the linear system, it is seen that
the multiblock scheme converges somewhat faster than

the single-block scheme. This may be due to the fact
that when a mesh is decomposed into smaller sized

blocks, the error signals of each block are damped faster
during the subiterations, which thus improves the con-

vergence of the global solution in the entire domain. For
20 subiterations, which is more typical for applications,



thesingle-blockschemeconvergesfasteralthoughthe
degradationdueto theblockingis notsignificant.
Whiletheperformanceoftheflowsolverisnotsignifi-
cantlyeffectedbypartitioningthemesh,thememory
consummationisreducedbyafactorof 5comparedto
thesingle-blockmethod.Similarbenefitsandperfor-
mancewerealsoobtainedinthepreviousworkontwo-
dimensionalunstructuredmeshes[1]andthree-dimen-
sionalstructuredmultiblockgrids[11].Althoughnot
shown,computationsperformedonthemultiblockand
single-blockmeshesshownodifferencein thecon-
vergedsolutions.

SUBOFF with $_¢rn Appendages

The second test case is for turbulent flows over the

same SUBOFF bare hull with four stern appendages.

The Reynolds number is 14 million based on the body

length and freestream velocity. A number of grids, con-
sisting of 250K to 1.14M nodes (I.4M to 6.8M ele-
ments), has been used for grid convergence studies. The

spacing of the first mesh point off the surface is 0.6xl0 -6
relative to the length of the submarine; this spacing

yields a y÷ value less than of 0.5 over the surface of the
submarine. Figure 5 shows the surface grid in the region

of the stern appendages for turbulent flow computa-
tions. Figure 6 shows the convergence histories of mul-

tiblock and single-block solutions on a mesh with 600K
nodes and 3.5M elements. The convergence rate of the

multiblock solution is close to that of the single-block
solution; however, the memory required by the multi-
block solution is less than 1/5 that of the single-block
solution. It should be noted that the final solutions are

independent of the blocking strategy.

The present work also compares computed results
with the structured grid solution from Ref. [ 12] and the

experimental data from Ref. [13]. The experimental
data available for the SUBOFF configuration is not

symmetrical about the negative and positive angles of
attack. One has to take this into account when viewing

the comparison of computed results with the experimen-

tal data. Figures 7-9 show computed axial force, lateral

force, and pitching moment coefficients obtained on
both structured and unstructured grids along with the ex-
perimental data. The effect of varying the unstructured

mesh size on the computed forces and moments is seen
in the figures. It was found that in order to resolve the
lateral force, the unstructured grid needs at least 850K

nodes for this configuration. However, the prediction of
the axial force was still not satisfactory, even though the

grid size was increased. To remedy this problem, a mod-
ified Spalart and Allmaras turbulence model [6] is ex-

amined. Figures 10-12 compare the effects of the origi-
nal and modified models on grid with 850K nodes and
at 0 and 10--deg angles of attack. The prediction of the

Figure 5. Twenty-block unstructured grid with 1.14M
nodes for SUBOFF with stern appendages
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Figure 6. Convergence histories for turbulent flow
about SUBOFF with stern appendages

force coefficients at moderate angles of attack (within

10-deg) is improved by using the modified model.

Figures 13 and 14 show the convergence histories
for the residual, forces and moments of the multiblock

solution on the grid with 850K nodes at 10--deg angle of
attack. The residual is reduced to the machine accuracy

in 800 time steps, however, the force and moment coef-

ficients are converged in just 500 time steps. The cur-
rent multiblock solution required 600 MB in-core

memory, and took 20 hours for every 100 time steps on
the single processor mentioned before. This represents

a memory savings of a factor of about 5 and no CPU time
overhead over the single-block solution.

High-Lift Configuration

The last case is an example application for the com-

putation over a high-lift configuration (Energy Effi-
cient Transport). This is a fairly complex configuration
with the slat, vane, and auxiliary flap attached to the
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Figure 12. Comparison of pitching moment coefficient
with simple and modified turbulence models
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SUBOFF body with four stern appendages

Figure 15. High-lift configuration with 2 million
nodes and 11 million elements
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Figure 14. Convergence history of forces and moment for
SUBOFF body with four stern appendages

main wing. The mesh for this configuration contains
over 2 million nodes and 11 million elements for half of

the physical space. The mesh is partitioned into 12
blocks for the multiblock computation. Figure 15

shows the configuration which has a symmetric plane at

the center of the configuration. Figure 16 shows the sur-
face grid in the wing region which indicates the com-

plexity of the configuration.

The flow conditions for this computation are a

10--deg angle of attack and a Reynolds number of about
1.6 million based on the mean aerodynamic chord. The

boundary conditions used in the computation are the
characteristic variable boundary condition on the far-

field, no-slip condition on the solid wall surface, and a
symmetric flow condition on the central plane of the
configuration. The CFL number was linearly ramped
from 1 to 100 over 100 iterations, and 10 subiterations

of a symmetric Gauss-Seidel method were used to solve

the linear system. Figures 17-20 show the computed Cp

Figure 16. Surface grid in the wing region

distributions on the slat, main, vane, and flap elements

at an inner section of the wing (27.6% of the span loca-
tion from the root of the wing). It is seen that the com-

putation is in reasonably good agreement with the ex-

perimental data [14].

The convergence history of the multiblock solution

for the configuration is shown in Figure 21. The residu-
al is reduced by 4 orders of magnitude in 1500 time

steps. The current multiblock solver requires about 1
GB in-core memory for this configuration, using single

precision definition for the flux Jacobian matrices. It
should be pointed that there is no way to perform such
a computation using the single-block solver, since the

memory requirements are prohibitively high. However,
the required CPU time for the multiblock solution is still

very large, because of the size of the computational grid.
Several procedures have been taking place at the Engi-
neering Research Center to shorten the computational
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Figure 19. Comparison of Cp distribution on
the vane element
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time. One is to use a mixed element method to reduce

the number of mesh edges for the computations. Anoth-

er procedure is to use the parallel algorithm to reduce the
turnaround time since the present multiblock strategy

readily supports the parallel implementations.

Conclusions

A multiblock unstructured flow solver is presented
to solve the three--dimensional incompressible Re-

ynolds-averaged Navier-Stokes equations. The multi-
block technique has been previously demonstrated in
the two--dimensional work, and is now extended to

three-dimensional problems. Results presented show
that, by properly allocating the memory for the code, the

multiblock solution may reduce the memory require-
ments by a factor of 5 compared to the single-block

method. Solutions about an appended submarine and a
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Figure 20. Comparison of Cp distribution on
the flap element
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Figure 21. Convergence history of multiblock solution
for high-lift configuration



high-liftconfigurationarepresentedtodemonstratethe
capabilityof the current solver for large-scale complex
flow simulations, which is otherwise impractical to im-

plement due to the large memory requirements of the
unstructured flow solver. Future work of adding the ca-
pability to handle the mixed elements and parallel im-

plementation will further improve the efficiency of the

unstructured solver by greatly reducing the computa-
tional time and memory requirements, and thus provide

a highly efficient and cost-effective tool to predict
large-scale realistic complex flows about complex con-

figurations.
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